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The Effect of Coordinate Errors on the Phase-bangle Distribution*
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The probability distribution of the magnitude of the phase-angle error ([6°]) is worked out for an in-
complete model structure when there are coordinate errors in the atomic positions. The corresponding
problem for a centrosymmetric structure, namely the calculation of the percentage of reflexions for
which the signs of the structure factors calculated from the coordinates of the model structure would
agree with the true signs of the reflexions, is also worked out. The theoretical distributions could be
used to study the effect of crystal-structure refinement on the phase-angle distribution. Numerical

tables that are necessary for such a study are given.

Introduction

In an earlier paper (Parthasarathy, 19656, hereafter
referred to as P, 1965b) the probability distribution of
6,1 which is the difference in the phase of the true
structure factor Fy arising from all the N atoms in the
unit cell and that due to the atoms from an incomplete
model structure containing P(< N) atoms, has been
worked out under the assumption that there are no
errors in the coordinates of the atoms of the model.
However, the model structure that is met with at any
stage in a crystal-structure analysis is such that there
are random errors in the coordinates of the atoms of
the model and the process of crystal structure refine-
ment consists in reducing this error as much as pos-
sible, consistent with the amount and accuracy of the
intensity data. In this connexion it would be interesting
to study how the probability distribution of the phase-
angle difference is modified as the errors in the co-
ordinates of the atoms in the model are reduced. In
this paper we shall work out the probability distribu-
tion of the phase-angle error 8¢ which is the difference

* Contribution No. 364 from The Centre of Advanced
Study in Physics, University of Madras, Madras-600025, India.

+ 6 is also the phase-angle error since it is the amount by
which the phase op of the model structure (without coordinate
errors) is to be increased in order to obtain the true phase
oy of the reflexion.

between the true phase of a reflexion and that (i.e. af)
calculated from the coordinates of the atoms in the
model structure. In order to avoid complications we
shall consider only crystals and models which satisfy
the requirements of the acentric distribution of Wilson
(1949), namely the P=MA case of P (1965b).

The corresponding problem for a centrosymmetric
crystal would be (see Parthasarathy, 1965a, hereafter
referred to as P, 19654) the derivation of the probability
function of s¢ which is the product of the true sign sy
of the reflexion and that (i.e. s§) calculated from the
model structure. In this paper we shall also derive the
probability function of s¢ for crystals and models which
satisfy the requirements of the centric distribution of
Wilson (1949), namely the P= M case of P (1965a).

Derivation of the probability distribution of §¢

Consider a non-centrosymmetric crystal containing N
atoms in the unit cell. Suppose that, at a given stage in
a crystal-structure analysis, the model structure con-
sists of P(< N) atoms and let 4rp; be the error in the
coordinates of atom j in the incomplete model. Follow-
ing Luzzati (1952) we shall assume that the coordinate
errors Arp; (j=1,2,...P) are normally distributed
independent random vectors and define the quantity D
to be -
D={cos 2rnH . 4r)p ’ )
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where the average is over the coordinate errors of the
atoms in the model structure.

From P (1965b) it is clear that the probability den-
sity function (abbreviated as p.d.f.) of 8¢ can be ob-
tained from a knowledge of the function P(yy,0¢; %)
which is the conditional joint p.d.f. of yy and 8¢ for a
given y% (for notation employed see Srinivasan &
Ramachandran, 1965). The function P(yy,0¢; y%) can
be easily obtained from the expression for the condi-
tional joint p.d.f. of |Fy| and 6¢ for a given |F§| and
the latter has been shown to be [see equation (A7), p. 8
of Srinivasan & Chandrasekaran (1966)]:

o IAL
7 [0d+oi1—D?)]

— (|Eyl? + DA{F§P — 2| Fy| |F§ID cos 6¢
X exp [__(| w2+ D?| Plk | Fyl |ﬁpl c_o§9

P(|Fyl, 0% [FED) =

o3+03(1- DY) ] - @

Making use of the normalized variables yy(=|Fy|/oy)
and y§(=|F§|/op) and the notation that

oi=0%lok, o}=0§/0F ©)
62=02D? and 62=0%+0}(1- D%, 4
we can rewrite equation (2) as
P(yn,0° yp)= nyTNg
xexp [~ (yi +0iys* —204ynyscos 09)/af] . ®)
In terms of the normalized variables yy and yp(=

|Fel/op) We can rewrite equation (5) of P (1965b) as

P(yn,0; yp)= %g

x exp [—(y§ + 013 —20,ynypcos 6) [d3] . (6)
It is obvious from (3) and (4) that
o+oi=1and 6i+oi=1. @)

We know the p.d.f.’s of y§ and yp to be

P(y)=2yexp[—)*, y=yporys. ®)

From the similarity of the pairs of expressions for
P(yy,0¢; y§) and P(yy,0; yp) [see equations (5) and
(6)] and those for P(y§) and P(yp) [see equations (8)
and (7)] it is obvious that the p.d.f. of 8¢ can be ob-
tained from that of # by replacing the set (6, o, and ;)
by the corresponding set (6¢, o, and o). We therefore
obtain from equation (28) of P (1965b6) the p.d.f. of
|6¢| to be

en_ O3 o2o cos? ¢
PAo*D 7 + 7(l —a2 cos? 6°)

405 cos 8¢
(1—02cos? §°)32

R G4COs 0°
X [7+ — tan SITITT e, oD . (9)
n V(1 —a2 cos? 6°)
Adding the first two terms in the right-hand side
of (9) and replacing tan~!(x) by its equivalent

sin™! [x/}/ 1+ x?] we can rewrite (9) as

g4 cos 6°

4 AT
JV1—0a2 cos? ¢

X {g +sin~! (64 cos 6")}] .

ey — ]
P(6N= n(1 —a3 cos? 6°) []

(10)

Derivation of the probability function of s¢

The probability function of s¢ can be obtained from
the conditional joint density function of yy and s° for
a given yf by following the procedure outlined in P
(1965a).

From equation (A18) on p. 9 of Srinivasan & Chan-
drasekharan (1966) we obtain the conditional p.d.f. of
Fy for a given F§ as

—(Fy— DFg)?
cxp [2{Gé+aﬁ(1 —DZ)}]
P(Fy; Fp)= e
V2r{ol+a2(1— D} .

(n

We can therefore obtain the conditional joint p.d.f. of

|Fy| and s for a given |F§| to be [see equations (3), (4)

(8) and (9) of P (19654)]

- ;(_sIFNI—D]FEI)Z]
2{g§+a(1-DH}1 (12

V2n{c&+od(1- D3} .

P(|Fyl,s¢; [FEl)=

Making use of the normalized variables yy and y§ and
(3) and (4), we can rewrite (12) as

1

P(yy,s¢; y)= —===; expl— (s’yy—0,4y5)*/204]. (13)
V2no}

In terms of the normalized variables yy and yp we can

rewrite equation (9) of P (19654) as

1
P(yn,s; yp)= ", == exp [—(syn—01yp)*[203] . (14)
V 2ro3

The p.d.f.’s of y§ and yp are known to be
2
P(y)= V—n— exp [~)?/2] where y=ypor yg. (15)

From the similarity of the pairs of expressions for
P(yy,s%; y§) and P(yy,s; yp) [see equations (13) and
(14)] and those for P(y§) and P(yp) [see equations (15)
and (7)] it is obvious that the probability function of
5¢ can be obtained from that of s by simply replacing
the set (s, g, and o,) by the corresponding set (s¢, o,
and og). We therefore obtain from equation (28) of
P (1965a) the probability function of s¢ as

c

P(s9)=1+ —Snitan‘l [oosl=4+ " sin"[o]. (16)
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Discussion of the theoretical results

Making use of equations (3) and (4) in equation (10)
we can obtain the cumulative function of |8¢| as

lec| I _O.ZDZ
NGop={ " pospage= L=A2)

0

1ac|
X S [I +
0

x {% +sin~*! (6,D cos 6°) H

a,Dcos 6°

V/1—02D? cos? 6°
dég-
(1—0%D*cos? 0°) ° (17)
The probability that the sign of F§ is the same as the
true sign (i.e. for s°= +1) can be obtained from equa-
tion (16) as
P(+)=P(s=+1)=%+ %sin‘l(alD) (18)

where we have made use of equations (3) and (4). It is
clear from (17) and (18) that quantities N(]@¢|) and
P(+) depend on two parameters, namely 62 which is
the fractional contribution to the local mean intensity
from the atoms in the model structure, and D which
is characteristic of the mean value of the magnitudes
of the coordinate errors (i.e. {]4r|)p) [see equation
(19)]. As the number of atoms in the model structure
increases, the value of ¢? also increases and finally
when the model accounts for all the N atoms in the
structure the value of o2 tends to unity. As the crystal
structure is refined more and more, the value of {|4r|)
decreases and hence that of D tends to unity. It is also
readily seen that if we put D=1, equations (9) and (16)
reduce respectively to equation (28) of P (1965b) and
equation (28) of P (1965a) as required.

Luzzati (1952) has shown that the parameter D is
related to the mean error (]4r|), by the relation

D=exp [- 7; H2((4r])? ] (19)

where H stands for 2(sin §/2). It is hence clear that the
quantities N(|6¢]) and P(+) depend on {|4r|) as well
as the length H of the reciprocal lattice vector H. It is
convenient to obtain an average distribution for the
whole set of data and hence we define a weighted-aver-
age cumulative function N(]6¢|) where the weight for a
given H is taken to be the fractional number of recip-
rocal-lattice points in a thin shell of radius H and
thickness dH. That is

dH

Hmax
0

(o=

Hmax
0

N(o)an | (20)

where dH is the volume of the shell of radius H and

thickness dH in reciprocal space. That is,

dH=4nH*dH . 21

In view of equation (21) we can rewrite equation
(20) as

Hmax
o=\ NonHan
max Y0
where H,,,, is the largest value of H corresponding to
the data at hand. For example, if the complete data for

Cu Ku is available then H,,,,=(2/1-542)=1-297.
In a similar way we define the average value for
P(+) to be

22)

Hmax 7:3
——-—fS sin"‘[alexp{———
3
7'[I_Imax 0 4

x H2(|dx]y? H HdH.

P(+)=%+
(23)

The integrals in equations (22) and (23) are to be
evaluated by a numerical method. For the equal-atom
case, the value of 6% will be practically independent of
H and hence can be taken to be a constant as far as the
integration with respect to H is concerned. The values
of P(+) and N(|6¢]) (for various values of |6¢|) were
evaluated as a function of 62 and {]4r|) and are given
in Tables 1 and 2 respectively. The values of P(+) and
N(]6°|) corresponding to {|4r|>=0 agree with the val-
ues of P(+) and N(8) (see P, 1965a, b) respectively as
is to be expected.

It may be noted here that equations (22) and (23)
also hold good for crystals containing a sufficiently
large number of heavy atoms at general positions in
the model structure such that F§ follows a Wilson dis-
tribution. However, in this case o2 will be a slowly
varying fur.ction of H and for a rigorous evaluation of
the average functions N(|#¢|) and P(+) this fact must
also betakenintoaccount.Sincethismakesthenumerical
evaluation of equations (22) and (23) more difficult we
shall not attempt it here. A more convenient method
of handling such cases would be to compute the aver-
age value of ¢? from the known contents of the unit
cell and model structure [see P (1965a) for the proce-
dure for obtaining the average value of 42] and make
use of this value to obtain the distributions from
Tables 1 and 2.

A study of Table 1 shows that when ¢? is not very
large, the value of P(+) remains practically the same
when {|4r|) varies in the range 0 to 0-1 A. This shows
that when the mean error in the model structure is

Table 1. Values of P(+) for different values of
{|4r|) and o}

0.2 0,3 p.n

<ar/o 0.1 0.5 0.6 0.7 0.2 0.0 1.0_]
0.00 60.2 6M.8 63,5 71.8  15.0 78,2 81.5 85,2 39,8 .
0,03 60,2 64.6 68,3 1.6  I8.8 77.9 81,2 M8 89.1 100.0
0,05 0.0 64,5 68.0 7.3 i} 77.5 80.6 88,1 82,1 93.9
0,08 59.7 64,0 67.8 70.6 73,5 76,8 79,3 82,0 85,9 90,3
0.10 $9.5 63.6 66.9  69.9 72.7  715.5 18,2  81.1 8,2 88.0
0,15 58.6 62.3 65.3 67.9 70.3 72,7 .9 77.3 79.7 82.3
0.20 57.5 60.7 63.3 65.5 67.6 69.5 71.8 713.2 75.1 17.0
0.30 55.3 57.5 59.2 60,7 62,1 3.3 6a.5 85.7 66,8 67.9
0.40 53.4 56,8 55.9 56.8 57.7 58.5 59.2 $9.9 60,6 61,2
0.50 52.1 53.0 53.6 58,2 58,7 55.2 55.6 56.1 56,5 $6.9
0,60 51.3 51.8 52.2 52.6 52.9 53.2 $3.5 53.7 58.0 SN, 2
0.80 50.5 50,83 s1.0 s1.1 51.3 51.% 51.5 51.6 51.7 s1.8

1.00 50.3 so.s 50,5 50,6 0.6 50.7 50.8 S0.8 50,9 50.9
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Table 2. Cumulative function N(|0°|) for different
values of {|4r|) and o?
¢ is in degrees and {|4r|) in A.

;3 ——
<A /&y € 10 15 20 30 %0 60 S0 120 150 g
SIGMAL “SQUARE = 0.2
0.00 3.4 6.7 11.1 16.6 21.9 31.9 0.9 S6.1 72.% 83.7 92,8 100
0.03 3.3 6.7 111 16,5 218 31,7 K0.8 5.9 72.2 3.6 92.3 100
0.05 3.3 6.6 11.0 16.3 21,6 315 M0.5 55.56 71.9 83.% 97.2 100
0.08 3.2 6.5 10.7 16,0 211 30.9 39.7 Salg 71.3 22.9 92.0 100
0.10 3.2 6.3 10.5 15.7 20,8 30.3 3911 Sai1 70,7 82.5 91.8 100
0.15 3.0 6.0 9.9 1al3 19,6 28.7 37.2 51.9 68,8 1.7 91.2 100
0,20 2.8 5.6 9.3 138 18.3 26,9 35,0 &9.% 66.5 79.6 90,3 100
030 2.8 A8 8.0 11,9 15.9 23,5 30.8 &4.5 61.6 76.0 85.4 100
080 2.1 A2 7.1 10,6 14,0 2009 27.6 NO.3 57.5 72.8 6.7 100
0.50 1.9 3.9 6.5 9.7 12.9 19.2 25.5 37.6 Sk.6 70.5 85.a 100
0.60 1.8 3.7 6.1 9.2 12,2 18,2 28l2 359 52.9 69.0 Ba.6 100
0.80 1.7 3.5 5.8 &7 11.6 17.3 23.1 34.6 51.2 67.7 83.9 100
1.00 1.7 3.8 5.7 85 118 17.0 22.7 33.9 50.6 67.2 83.6 100
SIGMAL SQUARE = 0.4
0.00 A7 9.8 15.6 23,0 30,0 42.5 52.9 63,2 81.6 89.6 95.3 100
0.03 k.7 9.3 15.% 2208 29,8 82,2 5206 7.8 31.4 9.5 as.2 100
0.05 &6 9,2 15.2 22,5 29.3 817 S2.0 67.2 81.0 89.7 95.1 100
0,02 .k 8.9 167 2107 28.% 0.5 50.7 6.0 30.1 a8.7 94.8 100
0.10 4.3 2.6 1b.2 2100 27.6 39.% V9.5 6.9 792 881 9.5 100
0.15 3.3 7.8 12,9 19.2 25.2 36,3 A6.0 1.4 76.6 6.5 3.7 100
0.20 3.5 7.0 11.6 17,3 22.7 3310 2.2 57.8 7I.3 8a.3 92.7 100
0.30 2.8 5.6 9% 180 185 2702 3513 &9i5 6.8 7905 an.2 100
0.80 2.8 N7 7.9 117 1506 231 30.2 A3k 60.6 75.1 7.9 100
0.50 2.1 k.2 6.9 1004 1313 20.5 27.0 33.5 S6.5 71.9 6.2 100
0.60 1.9 3.8 6.8 9.6 12,8 19,0 25.2 37.1 5.0 69.9 85.1 100
0.80 1.8 3.6 5.3 8.9 11.3 17.7 23.5 35.0 S1.7 68.1 #a.1 100
1.00 1.7 3.4 5.7 8.6 11.5 17.2 22.9 38.2 50.9 67.% 83.7 100
S1GMA1 SQUARE = 0.6
0.00 6.7 13.2 21,7 31.6 80,5 55.0 65.7 78,9 887 93.8 97.72 100
0,03 6.6 13.0 21,4 31,1 39,9 S4.4 65.1 78,5 88.5 9337 97 ; 100
0.05 6.6 12.7 2008 304 39.1 S53.v 6&.1 77.7 8&.0 93.4 97.0 100
0.08 5.0 12.0 19.7 28,8 37,1 51.2 61.9 75.9 86.4 92.7 9.7 100
0.10 5.7 11,k 188 27,5 3506 49.3 60.0 IN.5 85,8 92.1 96.% 100
0.15 5.0 9.9 16,58 24,1 31.% kb.2 S4.6 69,7 82.6 90,2 95.5 100
0.20 8,3 &5 14,1 20,9 27,6 39.0 NS0 64,3 78.6 87.7 9x.3 100
0,30 3.2 6.5 10,7 16,0 21,0 30.6 39.2 $3.9 70.1 82.0 91.5 100
0.40 2.6 5.2 8.6 12,8 17,0 25.0 32.5 %6.0 652.9 76.8 88.8 100
0.50 2.2 &4 7.8 110 186 2106 28.% 1.0 58.0 73.0 6.8 100
0.60 2.0 L0 67 10,0 132 19.7 26.0 38.1 Sa.9 70.6 85.5 100
0.80 1.8 3.6 6.0 9.0 12,0 18.0 23.8 35.% 52.1 64.% 84.3 100
1.00 1.7 3.5 5.8 87 11,6 17,5 231 3h.e 311 67.5 8318 100
SIGMA1 SQUARE « 0,8
0.00  10.5 20,7 33,2 6.6 57.3 72.0 20,7 89,5 98,7 97.2 98,7 100
0.03 10.2 20,1 32,3 45,4 S6.0 70.8 79.7 33,9 98.% 97,0 98,7 100
0.05 9.7 19,1 30,7 63,5 S6.0 68.9 P&,2 87.8 93,9 96.7 98,5 100
0.08 8.7 17.2 27.8 39.7 3,8 6&.9 7N.6 85.5 92.5 96.0 987 100
0.10 8.0 15,8 258 37.0 46,7 61.7 71.8 &3.& Al.x 95.3 97.9 1nQ
0.15 6.5 12.8 21.0 30,5 39,2 53.3 63.8 77.3 87.6 93.2 96.9 100
0.20 $.3 10.5 17.2 25,3 32,7 &5.6 55.9 70.5 33,0 90,& 95,6 100
0.30 3.7 7.4 12,2 18,0 23,7 34,0 &3.1 S57.7 73,2 84,1 92,5 100
0,80 2.8 5,7 98 14,0 184 26,9 34.7 481w 64.9 78.7 3.5 100
0.50 2.3 k.7 7.8 11,6 1S.4 22,7 29.6 42,4 59,2 73,9 87,3 100
0.60 2.1 k.2 6.9 10,3 13,7 20,3 26.8 38.0 55,7 71,72 85,8 TrOO
0.80 1.8 5.7 6.1 9.2 12.2 18,2 2.2 35,7 52,5 68,6 84,k 100
1,00 108 305 519 &2 117 17.5 23.2 4.6 S1.3 67.7 43.9 100
SIGMA1 SQUARE = 1,0
.00 100.0 100.0 100.0 100.0 100,0 100.0 100.0 100.0 100,0 100.0 100,08 100
0.01 80,5 93,6 97.5 98,8 99.3 99.7 99.3 99.9 99,9 99.9 99.9 1n0
0.02 57,6 80.5 91.z 95,7 97,6 988 99.3 99.7 9alg 99.9 9a.a 1on
0.03 43,3 67.8 33,1 91,1 94,6 97,5 98,4 99,2 99,6 99.8 99,9 1n0
0.06 343 S7.% 75,0 85,7 90.9 95.5 97.3 987 994 99.7 99.9° 1ag
0,05 28.2 49,3 67,5 80.1 86.9 93,2 95.8 98.0 99,0 99,5 99.8 100
0.06 25,9 43.0 609 74,6 82,6 90.6 94,2 97,1 9&.6 99.3 9alr 1an
0.07 2007 3709 55.2 69.% 78,3 87.8 92,3 96.1 O9f.1 99.0 9.6 100
0.08 18.2 33,8 50,2 64,6 74,2 84,9 90.3 95.0 Aa7.F 9&,7 99.& 100
0,09 16,2 30.5 46.0 60,2 70,1 81.9 8.1 937 96.9 98.% 9913 100
0.10 1.6 27.7 82,3 56,2 66,3 79,0 85,8 92,8 96,3 9&.n Aag,1 100
0015 9.6 18,6 29.5 81.2 50.3 6.9 7M.z .8 92.1 95.7 il 1nn
020 700 13(7 2201 31.6 39,9 S53h 63 76.5 86.9 92.7 6.7 10n
0.30 L) 8.7 1,2 20,8 26.9 37.8 L7.0 61,8 76,0 R&. & 93,4 10D
0.40 3.2 6,5 10,& 15,3 20,0 28,8 36.8 50.6 6A,7 79,8 90,2 1np
0,50 2.5 5.0 8.3 12,& 16,3 23.8 30.9 43,7 60,3 74,7 &7,7 16n
0060 2.2 &b 702 10.8 I3 2100 27.5 38.7 S6.h 71.7 A6.0 1nn
0.80 1.9 3.8 6.3 9.8 12,5 18,5 24,5 36,1 52,8 68,R 8&.5 100
Q.DD 1.8 3.6 5.9 8,9 11.8 17,6 23,8 34,7 S51.4 67.8 23,9 100

about 0-1 A, it is not very rewarding to refine the in-
complete model structure first and then use the refined
coordinates to calculate a Fourier synthesis to locate

more atoms [see Ramachandran & Srinivasan (1961)
for the relative importance of phase over structure-
factor magnitude in Fouiier synthesis]. In other words,
we can proceed with the process of structure comple-
tion first (i.e. locating more and more atoms from the
subsequent Fourier maps), theieby making the value
of 6% larger and larger, and finally refine the complete
but imperfect model structure. It can be seen from
Table 1 that when o?=1 and {|4r|>=0-1 A, the value
of P(+)is 88 % and this shows that at this stage 12%
of reflexions will still have their signs different from
that of the model structure. Since, when ¢2=1, the
value of P(+) increases noticeably with decrease in the
value of {|4r|) the refinement at this stage would be
meaningful and rapid.

A study of Table 2 shows that even in non-centro-
symmetric crystals similar conclusions hold good,
namely (i) that it may not be advantageous to refine an
incomplete structure (provided the errors in the co-
ordinates are about 0-1 A) and then proceed with
structure completion, and (ii) the refinement of a com-
pleted (i.e. 63=1) but imperfect structure would be
meaningful and rapid.

A study of the values of N(90°) in Table 2 shows that
provided the value of the mean error in the coordinates
of the anomalous scatterer is not moie than 0-1 A the
percentage of reflexions whose phases are correctly
determined by the quasi-anomalous method (see P,
1965b) remains practically the same as when there are
no errors in the coordinates of the anomalous scatterer.

One of the authors (V.P.) thanks the University
Grants Commission, New Delhi, India for financial
assistance.
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